Pandas.DataFrame如何重置列的行名

其他教程   发布日期:2023年07月01日   浏览次数:284

本文小编为大家详细介绍“Pandas.DataFrame如何重置列的行名”,内容详细,步骤清晰,细节处理妥当,希望这篇“Pandas.DataFrame如何重置列的行名”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

pandas.DataFrame中的现有列分配给索引index(行名,行标签)。为索引指定唯一的名称很方便,因为使用loc,at选择(提取)元素时很容易理解。

将描述以下内容。

set_index()的使用方法

  • 基本用法

  • 将指定的列保留为数据:参数drop

  • 分配多索引

  • 将索引更改为另一列(重置)

  • 更改原始对象:参数inplace

读取csv文件等时指定索引

使用索引(行名)提取(选择)行和元素

了解如何更改索引的一部分或将整个列表替换为列表等,而不是将现有列分配给索引。

Pandas.DataFrame的行名和列名的修改

以下面的数据为例。

import pandas as pd

df = pd.read_csv('./data/22/sample_pandas_normal.csv')
print(df)
#       name  age state  point
# 0    Alice   24    NY     64
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 3     Dave   68    TX     70
# 4    Ellen   24    CA     88
# 5    Frank   30    NY     57

set_index()的使用方法

基本用法

在第一个参数键中指定用作索引的列的列名(列标签)。指定的列设置为索引。

df_i = df.set_index('name')
print(df_i)
#          age state  point
# name                     
# Alice     24    NY     64
# Bob       42    CA     92
# Charlie   18    CA     70
# Dave      68    TX     70
# Ellen     24    CA     88
# Frank     30    NY     57

将指定的列保留为数据:参数drop

默认情况下,如上例所示,从数据列中删除指定的列。如果参数drop = False,则指定的列将设置为index,并且也将保留在data列中。

df_id = df.set_index('name', drop=False)
print(df_id)
#             name  age state  point
# name                              
# Alice      Alice   24    NY     64
# Bob          Bob   42    CA     92
# Charlie  Charlie   18    CA     70
# Dave        Dave   68    TX     70
# Ellen      Ellen   24    CA     88
# Frank      Frank   30    NY     57

分配多索引

如果在第一个参数键中指定了列名列表(列标签),则将多列分配为多索引。

df_mi = df.set_index(['state', 'name'])
print(df_mi)
#                age  point
# state name               
# NY    Alice     24     64
# CA    Bob       42     92
#       Charlie   18     70
# TX    Dave      68     70
# CA    Ellen     24     88
# NY    Frank     30     57

使用sort_index()排序时,它可以整齐显示。

df_mi.sort_index(inplace=True)
print(df_mi)
#                age  point
# state name               
# CA    Bob       42     92
#       Charlie   18     70
#       Ellen     24     88
# NY    Alice     24     64
#       Frank     30     57
# TX    Dave      68     70

使用sort_values()对行进行排序以进行说明。有关排序的详细信息,请参见以下文章。

pandas.DataFrame,Series排序(sort_values,sort_index)

默认情况下,如果在set_index()中指定一列,则原始索引将被删除。

print(df_i)
#          age state  point
# name                     
# Alice     24    NY     64
# Bob       42    CA     92
# Charlie   18    CA     70
# Dave      68    TX     70
# Ellen     24    CA     88
# Frank     30    NY     57

df_ii = df_i.set_index('state')
print(df_ii)
#        age  point
# state            
# NY      24     64
# CA      42     92
# CA      18     70
# TX      68     70
# CA      24     88
# NY      30     57

如果将参数append设置为True,则除了原始索引之外,还将将指定的列添加为新的层次结构索引。

df_mi = df_i.set_index('state', append=True)
print(df_mi)
#                age  point
# name    state            
# Alice   NY      24     64
# Bob     CA      42     92
# Charlie CA      18     70
# Dave    TX      68     70
# Ellen   CA      24     88
# Frank   NY      30     57

添加的列是最底层。使用swaplevel()切换图层。

print(df_mi.swaplevel(0, 1))
#                age  point
# state name               
# NY    Alice     24     64
# CA    Bob       42     92
#       Charlie   18     70
# TX    Dave      68     70
# CA    Ellen     24     88
# NY    Frank     30     57

将索引更改为另一列(重置)

与前面的示例一样,如果使用set_index()指定列,则原始索引将被删除。

如果要保留原始索引,请使用reset_index(),它会从0开始按顺序对索引重新编号。

print(df_i)
#          age state  point
# name                     
# Alice     24    NY     64
# Bob       42    CA     92
# Charlie   18    CA     70
# Dave      68    TX     70
# Ellen     24    CA     88
# Frank     30    NY     57

df_ri = df_i.reset_index()
print(df_ri)
#       name  age state  point
# 0    Alice   24    NY     64
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 3     Dave   68    TX     70
# 4    Ellen   24    CA     88
# 5    Frank   30    NY     57

如果要将索引更改(重置)到另一列,请在reset_index()之后使用set_index()。如果一次性全部编写,将如下所示。

df_change = df_i.reset_index().set_index('state')
print(df_change)
#           name  age  point
# state                     
# NY       Alice   24     64
# CA         Bob   42     92
# CA     Charlie   18     70
# TX        Dave   68     70
# CA       Ellen   24     88
# NY       Frank   30     57

请注意,为方便起见,在此示例中将具有重叠值的列设置为索引,但是如果索引值不重叠(每个值都是唯一的),则更容易选择数据。

另请参见以下有关reset_index()的文章。

Pandas.DataFrame,重置Series的索引index(reset_index)

更改原始对象:参数inplace

默认情况下,set_index()不会更改原始对象并返回新对象,但是如果inplace参数为True,则原始对象将被更改。

df.set_index('name', inplace=True)
print(df)
#          age state  point
# name                     
# Alice     24    NY     64
# Bob       42    CA     92
# Charlie   18    CA     70
# Dave      68    TX     70
# Ellen     24    CA     88
# Frank     30    NY     57

读取csv文件等时指定索引

从csv文件等中读取并生成pandas.DataFrame或pandas.Series时,如果原始文件包含要用作索引的列,则可以在读取时指定该列。

使用read_csv()读取文件时,在参数index_col中指定一个列号,该列即成为索引。

df = pd.read_csv('./data/22/sample_pandas_normal.csv', index_col=0)
print(df)
#          age state  point
# name
# Alice     24    NY     64
# Bob       42    CA     92
# Charlie   18    CA     70
# Dave      68    TX     70
# Ellen     24    CA     88
# Frank     30    NY     57

有关读取csv和tsv文件的详细信息,请参见以下文章。

Pandas读取csv/tsv文件(read_csv,read_table)

使用索引(行名)提取(选择)行和元素

与前面的示例一样,如果在索引(行名,行标签)中指定唯一的字符串,则可以按名称提取(选择)行或元素。

print(df)
#          age state  point
# name                     
# Alice     24    NY     64
# Bob       42    CA     92
# Charlie   18    CA     70
# Dave      68    TX     70
# Ellen     24    CA     88
# Frank     30    NY     57

print(df.loc['Bob'])
# age      42
# state    CA
# point    92
# Name: Bob, dtype: object

print(df.at['Bob', 'age'])
# 42

以上就是Pandas.DataFrame如何重置列的行名的详细内容,更多关于Pandas.DataFrame如何重置列的行名的资料请关注九品源码其它相关文章!