Python怎么使用日志模块快速调试代码并记录异常信息

其他教程   发布日期:前天 15:16   浏览次数:70

本文小编为大家详细介绍“Python怎么使用日志模块快速调试代码并记录异常信息”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么使用日志模块快速调试代码并记录异常信息”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

一、日志层级

在开始之前,需要注意的是,在日志记录中存在一个层次结构,称为日志树或日志者层次结构。该层次结构由几个级别组成,每个级别代表了日志信息的不同严重程度。最常见的层次是:

CRITICAL #A critical error occurred, the program may not be able to continue running.
ERROR #An error occurred that should be investigated.
WARNING #An indication that something unexpected happened or indicative of some problem in the near future.
INFO #General information about the program's execution.
DEBUG #Detailed information for debugging purposes.

二、创建模块

让我们创建一个名为

  1. set_logging.py
的python模块:
  1. import logging
  2. logger = logging.getLogger()
  3. def set_logger():
  4. logger.setLevel(logging.INFO)
  5. handler = logging.StreamHandler()
  6. handler.setLevel(logger_level)
  7. formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  8. handler.setFormatter(formatter)
  9. logger.addHandler(handler)

为了明确代码,我们用

  1. getLogger
函数创建一个日志器实例,并使用
  1. setLevel
来设置日志级别(
  1. DEBUG
  1. INFO
等)。日志器的
  1. setLevel
方法就像一个过滤器,它决定了一条日志信息是否应该被处理并发送给处理程序。例如,如果我们将日志记录器的级别设置为
  1. INFO
,那么日志记录器就不会向处理程序发送级别为
  1. DEBUG
的消息,因为它们的严重程度低于在日志记录器上设置的最低级别。它只将级别为
  1. INFO
或更高的日志消息(即
  1. WARNING
  1. ERROR
  1. CRITICAL
)发送给处理程序进行处理。

我们创建一个

  1. StreamHandler
,将日志信息发送到一个流中,如控制台或终端。它被用来输出日志信息以达到调试的目的。我们还为处理程序设置了级别。

我们这样做是因为当处理程序收到来自日志记录器的消息时,它将把这些消息与它的级别进行比较,并在发出之前过滤掉严重程度较低的消息。当我们有不同的处理程序时:

  1. logger.setLevel(logging.INFO)
  2. file_handler = logging.FileHandler()
  3. file_handler.setLevel(logging.ERROR)
  4. console_handler = logging.StreamHandler()
  5. console_handler.setLevel(logging.WARNING)

由于日志记录器的级别被设置为

  1. INFO
,它只向两个处理程序发送级别为
  1. INFO
或更高的日志消息,但每个处理程序只处理达到或超过其指定日志级别的消息。

回到我们的主要例子,然后我们创建一个格式化器并将其添加到处理程序中。格式化器指定了日志消息的格式,包括时间戳、日志记录器名称、日志级别和消息。最后,我们将处理程序添加到日志记录器中"。

现在在代码中,需要调用

  1. set_logger
,如下所示:
  1. import logging
  2. from set_logging import set_logger
  3. set_logger()
  4. logger = logging.getLogger()
  5. def roman_number(s: str) -> int:
  6. dic = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000}
  7. res = 0
  8. pre = None
  9. for char in s:
  10. res += dic.get(char)
  11. if dic.get(pre) and dic.get(pre) < dic.get(char):
  12. res -= 2 * dic.get(pre)
  13. pre = char
  14. logger.info("logging is awesome")
  15. return res
  16. roman_number("IV")

运行这段代码,结果如下:

2023-03-04 02:26:57,619 - root - INFO - logging is awesome

三、使用日志的优点

  • 级别。一个日志记录器提供了一种方法来为不同类型的消息设置不同的日志级别,如

    1. DEBUG
    1. INFO
    1. WARNING
    1. ERROR
    1. CRITICAL
    。这使得根据日志消息的严重程度来过滤和确定其优先级变得更加容易。当然,打印可以模仿与日志相同的行为,但它需要更多的硬编码工作,而且不像日志那样灵活。
  • 性能。打印日志信息可能比使用记录器慢,特别是在处理大量数据或频繁进行记录的时候。

  • 可配置性。记录器提供了一种方法来配置应用程序的日志行为,如日志级别、日志目的地和日志格式,而无需修改源代码。这使得随着时间的推移,更容易管理和维护日志行为。

  • 灵活性。记录器允许你将日志信息发送到多个目的地,如控制台、文件或数据库。这种灵活性使得管理日志和分析它们变得更加容易。

以上就是Python怎么使用日志模块快速调试代码并记录异常信息的详细内容,更多关于Python怎么使用日志模块快速调试代码并记录异常信息的资料请关注九品源码其它相关文章!