YOLOv5字符分割与识别的方法是什么

其他教程   发布日期:2024年11月11日   浏览次数:84

这篇文章主要介绍“YOLOv5字符分割与识别的方法是什么”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“YOLOv5字符分割与识别的方法是什么”文章能帮助大家解决问题。

字符分割

在实际应用中,识别车牌的字符是很重要的。为了实现字符分割,我们可以采用以下方法:

1.投影法:

通过计算车牌图像在水平和垂直方向上的投影直方图,确定字符的边界。

以下是一个简单的投影法实现:

import cv2
import numpy as np
 
def projection_segmentation(plate_image, direction='horizontal'):
    assert direction in ['horizontal', 'vertical'], 'Invalid direction'
    gray_image = cv2.cvtColor(plate_image, cv2.COLOR_BGR2GRAY)
    binary_image = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
 
    if direction == 'horizontal':
        histogram = np.sum(binary_image, axis=1)
    else:
        histogram = np.sum(binary_image, axis=0)
 
    threshold = np.max(histogram) * 0.5
    peaks = np.where(histogram > threshold)[0]
    start, end = peaks[0], peaks[-1]
 
    if direction == 'horizontal':
        return plate_image[start:end, :]
    else:
        return plate_image[:, start:end]

2.轮廓法:

通过检测二值化车牌图像的轮廓,然后根据轮廓的位置和形状筛选出字符。

以下是一个简单的轮廓法实现:

import cv2
 
def contour_segmentation(plate_image):
    gray_image = cv2.cvtColor(plate_image, cv2.COLOR_BGR2GRAY)
    binary_image = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
 
    contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    chars = []
 
    for cnt in contours:
        x, y, w, h = cv2.boundingRect(cnt)
        aspect_ratio = float(w) / h
        if 0.2 < aspect_ratio < 1.0 and 20 < h < 80:
            chars.append(plate_image[y:y + h, x:x + w])
 
    return chars

字符识别

在完成字符分割后,我们需要识别每个字符。

可以采用以下方法:

CNN:

使用卷积神经网络(CNN)对字符进行分类。可以使用预训练的模型,如LeNet、VGG等,或者自定义一个简单的CNN。

以下是一个简单的CNN实现:

import torch
import torch.nn as nn
 
class SimpleCNN(nn.Module):
    def __init__(self, num_classes):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(64 * 8 * 16, 128)
        self.fc2 = nn.Linear(128, num_classes)
 
    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = x.view(-1, 64 * 8 * 16)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x
 
num_classes = 36 # 根据实际情况设置类别数
model = SimpleCNN(num_classes)

LSTM:

使用长短时记忆网络(LSTM)对字符进行分类。可以在CNN的基础上添加一个LSTM层,以捕捉字符序列的时序信息。

以下是一个简单的LSTM实现:

import torch
import torch.nn as nn
 
class CNN_LSTM(nn.Module):
    def __init__(self, num_classes):
        super(CNN_LSTM, self).__init__()
        self.cnn = SimpleCNN(128)
        self.lstm = nn.LSTM(128, num_classes, num_layers=1, batch_first=True)
 
    def forward(self, x):
        batch_size, seq_len, c, h, w = x.size()
        x = x.view(batch_size * seq_len, c, h, w)
        x = self.cnn(x)
        x = x.view(batch_size, seq_len, -1)
        x, _ = self.lstm(x)
        return x
 
num_classes = 36 # 根据实际情况设置类别数
model = CNN_LSTM(num_classes)

在训练字符识别模型时,需要使用包含大量字符图像和对应标签的数据集。可以使用公开的字符识别数据集,或者自己构建数据集。训练完成后,即可使用模型对车牌中的字符进行识别。

预处理与后处理

为了提高字符识别的准确率,我们可以在字符识别之前对字符图像进行预处理,以及在识别完成后进行后处理。

预处理:

二值化:

将字符图像转化为二值图像,可以减少背景噪声的影响。可以使用OpenCV的adaptiveThreshold函数进行自适应阈值二值化。

import cv2
 
def binarize(char_image):
    gray_image = cv2.cvtColor(char_image, cv2.COLOR_BGR2GRAY)
    binary_image = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
    return binary_image

规范化:

将字符图像调整为统一的尺寸,以便输入到神经网络。

可以使用OpenCV的resize函数实现。

import cv2
 
def normalize(char_image, target_size=(32, 32)):
    resized_image = cv2.resize(char_image, target_size, interpolation=cv2.INTER_AREA)
    return resized_image

后处理:

置信度阈值:

在字符识别的结果中,可以根据置信度筛选最可能的字符。可以设置一个置信度阈值,仅保留置信度大于该阈值的字符。

def filter_by_confidence(predictions, confidence_threshold=0.5):
    top_confidences, top_indices = torch.topk(predictions, 1)
    top_confidences = top_confidences.squeeze().numpy()
    top_indices = top_indices.squeeze().numpy()
 
    filtered_indices = top_indices[top_confidences > confidence_threshold]
    return filtered_indices

NMS:

对字符识别的结果进行非极大值抑制(NMS),以消除重复的字符。

def nms(predictions, iou_threshold=0.5):
    boxes, scores = predictions[:, :4], predictions[:, 4]
    indices = torchvision.ops.nms(boxes, scores, iou_threshold)
    return predictions[indices]

通过这些预处理与后处理方法,可以进一步提高字符识别的准确率和鲁棒性。

以上就是YOLOv5字符分割与识别的方法是什么的详细内容,更多关于YOLOv5字符分割与识别的方法是什么的资料请关注九品源码其它相关文章!