今天小编给大家分享一下np.concatenate()函数如何使用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
引言
提到 numpy 的数组操作,我们就不得不说到 np.concatenate() 函数,concatenate 一词在英文中是级联的意思,我们可以简单地理解为连接,拼接。
函数调用
调用方法
numpy.concatenate((a1, a2, ...), axis=0, out=None)
各个参数的意义
(a1, a2, ...):数组序列,注意要用 () 或者 [] 符号括起来,否则会报错,具体可以参考这篇------np.concatenate()函数数组序列参数。
axis:设置级联时的坐标轴,如沿着x轴,y 轴或者 z 轴级联。对于坐标轴问题,具体可以参考这篇------numpy.sum()坐标轴问题。
out:(可选参数)暂时不做讨论。
有返回值,返回级联后的数组。
注意事项
在使用该函数的时候务必要注意,(a1, a2, ...) 中的 a1 , a2 均应该为可以迭代的对象,且维度不能够为 0,比如:我们给 a1 = 5 一个整数值,此时会得到 zero-dimensional arrays cannot be concatenated 的错误提示,具体代码如下:
# -*- coding:utf-8 -*-
"""
author: 15025
age: 26
e-mail: 1502506285@qq.com
time: 2020/12/1 16:54
software: PyCharm
Description:
"""
import numpy as np
class Debug:
@staticmethod
def mainProgram():
x = 5
y = np.ones(3)
z = np.concatenate(([x], y))
z1 = np.concatenate((np.array([x]), y))
# wrong calling method
# z = np.concatenate((x, y))
# print(z)
print("The value of z is: ")
print(z)
print("The value of z1 is: ")
print(z1)
if __name__ == "__main__":
main = Debug()
main.mainProgram()
"""
The value of z is:
[5. 1. 1. 1.]
The value of z1 is:
[5. 1. 1. 1.]
"""
我们可以看到,对于单个整数,我们可以先将它转换为 ndarray 或者 list 对象,然后进行级联操作。但是如果我们直接进行级联操作就会出错,可以自行尝试被注释掉的部分。
接下来我们给几个相关的例子。
示例1------一维数组
代码如下:
# -*- coding: utf-8 -*-
import numpy as np
class Debug:
def __init__(self):
self.x = np.array([1, 2, 3])
self.y = np.array([4, 5, 6])
self.x1 = np.array([[1],[2],[3]])
self.y1 = np.array([[4],[5],[6]])
def mainProgram(self):
z = np.concatenate((self.x, self.y))
z1 = np.concatenate((self.x1, self.y1))
print("The value of z is: ")
print(z)
print("The value of z1 is: ")
print(z1)
if __name__ == "__main__":
main = Debug()
main.mainProgram()
"""
The value of z is:
[1 2 3 4 5 6]
The value of z1 is:
[[1]
[2]
[3]
[4]
[5]
[6]]
"""
我们可以看到,对于结果 z ,np.concatenate() 完成的操作类似于np.hstack()函数,沿着 x 轴进行数组堆叠。对于结果 z1 ,np.concatenate() 完成的操作类似于np.vstack()函数,沿着 y 轴进行数组堆叠。我们知道这里是一维情况,产生这种结果的原因是 np.concatenate() 函数默认的连接方向是与被连接的数组本身的坐标轴方向是一致的。因为 self.x 与 self.y 均为横向数组,所以沿着横向连接。同理 self.x1 与 self.y1 均为纵向数组,所以沿着纵向连接。那么可不可能把一个横向数组和一个纵向数组连接起来呢?答案是否定的,可以自行尝试,比如将这里的 self.x 与 self.y1 连接起来,会得到一个错误。
既然对于一维数组是可以进行连接的,那么二维数组呢?接下来我们研究一下二维数组。
示例2------二维数组
代码如下:
# -*- coding: utf-8 -*-
import numpy as np
class Debug:
def __init__(self):
self.x = np.array([[1, 2], [3, 4]])
self.y = np.array([[5, 6], [7, 8]])
def mainProgram(self):
z = np.concatenate((self.x, self.y), axis=0)
z1 = np.concatenate((self.x, self.y), axis=1)
print("The value of z is: ")
print(z)
print("The value of z1 is: ")
print(z1)
if __name__ == "__main__":
main = Debug()
main.mainProgram()
"""
The value of z is:
[[1 2]
[3 4]
[5 6]
[7 8]]
The value of z1 is:
[[1 2 5 6]
[3 4 7 8]]
"""
我们可以从 z 的结果中得出,此时 np.concatenate() 完成的操作类似于np.vstack()函数, 沿着 y 轴进行数组堆叠。从 z1 的结果中我们可以看到,np.concatenate() 完成的操作类似于np.hstack()函数,沿着 x 轴进行数组堆叠。如我们之前讨论过的坐标轴问题,类似于np.repeat()的坐标轴问题。二维情况下,从左向右,axis=0 指的就是 y 轴,axis=1 指的就是 y 轴。
那么 np.concatenate() 函数对于一维,二维均是起作用的,那么对于三维数组,它可以使用吗?答案是肯定的。
示例3------三维数组
代码如下:
# -*- coding: utf-8 -*-
import numpy as np
class Debug:
def __init__(self):
self.x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
self.y = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
def mainProgram(self):
z = np.concatenate((self.x, self.y), axis=0)
z1 = np.concatenate((self.x, self.y), axis=1)
z2 = np.concatenate((self.x, self.y), axis=2)
print(self.x.shape)
print("The value of z is: ")
print(z)
print("The value of z1 is: ")
print(z1)
print("The value of z2 is: ")
print(z2)
if __name__ == "__main__":
main = Debug()
main.mainProgram()
"""
The value of z is:
[[[1 2]
[3 4]]
[[5 6]
[7 8]]
[[1 2]
[3 4]]
[[5 6]
[7 8]]]
The value of z1 is:
[[[1 2]
[3 4]
[1 2]
[3 4]]
[[5 6]
[7 8]
[5 6]
[7 8]]]
The value of z2 is:
[[[1 2 1 2]
[3 4 3 4]]
[[5 6 5 6]
[7 8 7 8]]]
"""
我们可以看到结果完全符合我们的预期。
以上就是np.concatenate()函数如何使用的详细内容,更多关于np.concatenate()函数如何使用的资料请关注九品源码其它相关文章!