这篇文章主要介绍“np.zeros()函数如何使用”,在日常操作中,相信很多人在np.zeros()函数如何使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”np.zeros()函数如何使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
函数调用方法:
numpy.zeros(shape, dtype=float)
各个参数意义:
shape:创建的新数组的形状(维度)。
dtype:创建新数组的数据类型。
返回值:给定维度的全零数组。
基础用法:
import numpy as np
array = np.zeros([2, 3])
print(array)
print(array.dtype)
"""
result:
[[0. 0. 0.]
[0. 0. 0.]]
float64
"""
可以看到我们成功创建了一个2行3列的全零二维数组。并且创建的数组中的数据类型是np.float64类型。
进阶用法:
import numpy as np
array = np.zeros([2, 3], dtype=np.int32)
print(array)
print(array.dtype)
"""
result:
[[0 0 0]
[0 0 0]]
int32
"""
可以看到,这里我们同样成功创建了一个2行3列的全零二维数组。并且我们指定了其数据类型为np.int32。
最高级的用法:
import numpy as np
# Create rain data
n_drops = 10
rain_drops = np.zeros(n_drops, dtype=[('position', float, (2,)),
('size', float),
('growth', float),
('color', float, (4,))])
# Initialize the raindrops in random positions and with
# random growth rates.
rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2))
rain_drops['growth'] = np.random.uniform(50, 200, n_drops)
print(rain_drops)
"""
result:
[([0.70284885, 0.03590322], 0., 176.4511602 , [0., 0., 0., 0.])
([0.60838294, 0.49185854], 0., 60.51037667, [0., 0., 0., 0.])
([0.86525398, 0.65607663], 0., 168.00795695, [0., 0., 0., 0.])
([0.25812877, 0.14484747], 0., 80.17753717, [0., 0., 0., 0.])
([0.66021716, 0.90449213], 0., 121.94125106, [0., 0., 0., 0.])
([0.88306332, 0.51074725], 0., 92.4377108 , [0., 0., 0., 0.])
([0.68916433, 0.89543162], 0., 90.77596431, [0., 0., 0., 0.])
([0.7105655 , 0.68628326], 0., 144.88783652, [0., 0., 0., 0.])
([0.6894679 , 0.90203559], 0., 167.40736266, [0., 0., 0., 0.])
([0.92558218, 0.34232054], 0., 93.48654986, [0., 0., 0., 0.])]
"""
以上就是np.zeros()函数如何使用的详细内容,更多关于np.zeros()函数如何使用的资料请关注九品源码其它相关文章!