今天小编给大家分享一下Python数据分析之堆叠数组函数怎么使用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
numpy 堆叠数组
在做图像和 nlp 的数组数据处理的时候,经常需要实现两个数组堆叠或者连接的功能,这就需用到
numpy
库的一些函数,numpy 库中的常用堆叠数组函数如下:stack
: Join a sequence of arrays along a new axis.hstack
: Stack arrays in sequence horizontally (column wise).vstack
: Stack arrays in sequence vertically (row wise).dstack
: Stack arrays in sequence depth wise (along third axis).concatenate
: Join a sequence of arrays along an existing axis.ravel() 函数
ravel() 方法可让将多维数组展平成一维数组。如果不指定任何参数,ravel() 将沿着行(第 0 维/轴)展平/拉平输入数组。
示例代码如下:
std_array = np.random.normal(3, 2.5, size=(2, 4))
array1d = std_array.ravel()
print(std_array)
print(array1d)
程序输出结果如下:
[[5.68301857 2.09696067 2.20833423 2.83964393]
[2.38957339 9.66254303 1.58419716 2.82531094]]
[5.68301857 2.09696067 2.20833423 2.83964393 2.38957339 9.66254303 1.58419716 2.82531094]
stack() 函数
stack() 函数原型是 stack(arrays, axis=0, out=None),功能是沿着给定轴连接数组序列,轴默认为第0维。
1,参数解析:
arrays: 类似数组(数组、列表)的序列,这里的每个数组必须有相同的shape。
axis: 默认为整形数据,axis决定了沿着哪个维度stack输入数组。
2,返回:
stacked :
ndarray
类型。The stacked array has one more dimension than the input arrays.实例如下:
import numpy as np
# 一维数组进行stack
a1 = np.array([1, 3, 4]) # shape (3,)
b1 = np.array([4, 6, 7]) # shape (3,)
c1 = np.stack((a,b))
print(c1)
print(c1.shape) # (2,3)
# 二维数组进行堆叠
a2 = np.array([[1, 3, 5], [5, 6, 9]]) # shape (2,3)
b2 = np.array([[1, 3, 5], [5, 6, 9]]) # shape (2,3)
c2 = np.stack((a2, b2), axis=0)
print(c2)
print(c2.shape)
输出为:
[[1 3 4] [4 6 7]]
(2, 3)
[[[1 3 5] [5 6 9]] [[1 3 5] [5 6 9]]] (2, 2, 3)
可以看到,进行 stack 的两个数组必须有相同的形状,同时,输出的结果的维度是比输入的数组都要多一维的。我们拿第一个例子来举例,两个含 3 个数的一维数组在第 0 维进行堆叠,其过程等价于先给两个数组增加一个第0维,变为1*3的数组,再在第 0 维进行
concatenate()
操作:a = np.array([1, 3, 4])
b = np.array([4, 6, 7])
a = a[np.newaxis,:]
b = b[np.newaxis,:]
np.concatenate([a,b],axis=0)
输出为:
array([[1, 2, 3], [2, 3, 4]])
vstack()函数
vstack函数原型是vstack(tup),功能是垂直的(按照行顺序)堆叠序列中的数组。tup是数组序列(元组、列表、数组),数组必须在所有轴上具有相同的shape,除了第一个轴。1-D arrays must have the same length.
# 一维数组
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.vstack((a,b))
array([[1, 2, 3], [2, 3, 4]])
# 二维数组
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.vstack((a,b))
array([[1], [2], [3], [2], [3], [4]])
hstack()函数
hstack()的函数原型:hstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。它其实就是**水平(按列顺序)**把数组给堆叠起来,与vstack()函数正好相反。举几个简单的例子:
# 一维数组
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
# 二维数组
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.hstack((a,b))
array([[1, 2], [2, 3], [3, 4]])
vstack()和hstack函数对比:
这里的v是vertically的缩写,代表垂直(沿着行)堆叠数组,这里的h是horizontally的缩写,代表水平(沿着列)堆叠数组。 tup是数组序列(元组、列表、数组),数组必须在所有轴上具有相同的shape,除了第一个轴。
concatenate() 函数
concatenate()函数功能齐全,理论上可以实现上面三个函数的功能,concatenate()函数根据指定的维度,对一个元组、列表中的list或者ndarray进行连接,函数原型:
numpy.concatenate((a1, a2, ...), axis=0)
a = np.array([[1, 2], [3,4]])
b = np.array([[5, 6], [7, 8]])
# a、b的shape为(2,2),连接第一维就变成(4,2),连接第二维就变成(2,4)
np.concatenate((a, b), axis=0)
array([[1, 2], [3, 4], [5, 6], [7, 8]])
注意:axis指定的维度(即拼接的维度)可以是不同的,但是axis之外的维度(其他维度)的长度必须是相同的。注意 concatenate 函数使用最广,必须在项目中熟练掌握。
以上就是Python数据分析之堆叠数组函数怎么使用的详细内容,更多关于Python数据分析之堆叠数组函数怎么使用的资料请关注九品源码其它相关文章!