怎么利用Golang泛型提高编码效率

工具使用   发布日期:2024年10月07日   浏览次数:44

本文小编为大家详细介绍“怎么利用Golang泛型提高编码效率”,内容详细,步骤清晰,细节处理妥当,希望这篇“怎么利用Golang泛型提高编码效率”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

工具函数

虽然标准库里面已经提供了大量的工具函数,但是这些工具函数都没有使用泛型实现,为了提高使用体验,我们可以使用泛型进行实现。

比如数值算法里很经典的

math.Max()
math.Min()
都是
float64
类型的,但是很多时候我们使用的是
int
int64
这些类型,在Golang引入泛型之前,我们经常像下面这样根据类型实现,产生大量模板代码:
func MaxInt(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func MaxInt64(a, b int64) int64 {
	if a > b {
		return a
	}
	return b
}

// ...其他类型

而使用泛型则我们只需要一个实现:

func Max[T constraints.Ordered](a, b T) T {
	if a > b {
		return a
	}
	return b
}

其中

constraints.Ordered
表示可排序类型,也就是可以使用三路运算符的类型
[>, =, <]
,包含了所有数值类型和
string
。可以通过
go get golang.org/x/exp
引入。

代码地址

其他的像json解析、参数校验、slices等也可以通过泛型进行实现。

数据结构

Golang自带的泛型容器有slices和map,这两个数据结构其实可以完成大部分工作了,但是有时候我们可能还需要其他的数据结构,比如说优先级队列、链表等。

虽然Golang在

container
包下有
heap
list
ring
三个数据结构,但说实话使用起来不是很方便,特别是元素类型全是
interface{}
,使用这些结构就需要各种类型转换。因此我们可以简单的拷贝这些代码,然后使用泛型进行改造,比如heap:

我们不但使用泛型进行实现,还把heap默认改为使用slice是实现,这样只需要实现一个LessFunc,而不是5个。

package heap

type LessFunc[T any] func(e1 T, e2 T) bool

type Heap[T any] struct {
	h        []T
	lessFunc LessFunc[T]
}

func New[T any](h []T, lessFunc LessFunc[T]) *Heap[T] {
	heap := &Heap[T]{
		h:        h,
		lessFunc: lessFunc,
	}
	heap.init()
	return heap
}

// 移除堆顶元素
func (h *Heap[T]) Pop() T {
	n := h.Len() - 1
	h.swap(0, n)
	h.down(0, n)
	return h.pop()
}

// 获取堆顶元素
func (h *Heap[T]) Peek() T {
	return h.h[0]
}

// 添加元素到堆
func (h *Heap[T]) Push(x T) {
	h.push(x)
	h.up(h.Len() - 1)
}

代码地址

其他的数据结构还包括list、set、pqueue等。

模板代码

在后台业务代码里面,我们经常会有很多个业务处理函数,每个业务处理函数我们基本都会通过一些代码封装成一个HTTP接口,这里其实基本上都是模板代码,比如说对于一个使用gin实现的

HTTP
服务,每个接口我们都需要进行以下处理:
  • 指定HTTP方法、URL

  • 鉴权

  • 参数绑定

  • 处理请求

  • 处理响应

可以发现,参数绑定、处理响应几乎都是一样模板代码,鉴权也基本上是模板代码(当然有些鉴权可能比较复杂)。

因此我们可以编写一个泛型模板,把相同的部分抽取出来,用户只需要实现不同接口有差异的指定HTTP方法、URL和处理请求逻辑即可:

// 处理请求
func do[Req any, Rsp any, Opt any](reqFunc ReqFunc[Req],
	serviceFunc ServiceFunc[Req, Rsp], serviceOptFunc ServiceOptFunc[Req, Rsp, Opt], opts ...Opt) gin.HandlerFunc {
	return func(c *gin.Context) {
		// 参数绑定
		req, err := BindJSON[Req](c)
		if err != nil {
			return
		}
		// 进一步处理请求结构体
		if reqFunc != nil {
			reqFunc(c, req)
		}
		var rsp *Rsp
		// 业务逻辑函数调用
		if serviceFunc != nil {
			rsp, err = serviceFunc(c, req)
		} else if serviceOptFunc != nil {
			rsp, err = serviceOptFunc(c, req, opts...)
		} else {
			panic("must set ServiceFunc or ServiceFuncOpt")
		}
		// 处理响应
		ProcessRsp(c, rsp, err)
	}
}

这样,现在一个接口基本上只需要一行代码即可实现(不包括具体业务逻辑函数):

	// 简单请求,不需要认证
	e.GET("/user/info/get", ginrest.Do(nil, GetUserInfo))
	// 认证,绑定UID,处理
        reqFunc := func(c *gin.Context, req *UpdateUserInfoReq) {
		req.UID = GetUID(c)
	} // 这里拆多一步是为了显示第一个参数是ReqFunc
	e.POST("/user/info/update", Verify, ginrest.Do(reqFunc, UpdateUserInfo))

代码地址,实现了一个基于gin的RESTful风格模板。

对象池/缓存

Golang标准库自带了一个线程安全、高性能、还能够根据对象热度自动进行释放的对象池

sync.Pool
,然而作为对象池,我们一般只会往里面放一种类型的对象,但
sync.Pool
里面的元素还是
interface{}
类型,因此我们可以简单的封装
sync.Pool
,让它里面的元素有具体类型:

这里其实就是简单的对象

sync.Pool
进行包装,然后添加了一个
ClearFunc()
在回收对象的时候进行一些清理操作,比如说
byte切片
我们需要让它的已用长度归零(容量还是不变)。
// 创建新对象
type NewFunc[T any] func() T

// 清理对象
type ClearFunc[T any] func(T) T

type Pool[T any] struct {
	p         sync.Pool
	clearFunc ClearFunc[T]
}

func New[T any](newFunc NewFunc[T], clearFunc ClearFunc[T]) *Pool[T] {
	if newFunc == nil {
		panic("must be provide NewFunc")
	}
	p := &Pool[T]{
		clearFunc: clearFunc,
	}
	p.p.New = func() any {
		return newFunc()
	}
	return p
}

// 获取对象
func (p *Pool[T]) Get() T {
	return p.p.Get().(T)
}

// 归还对象
func (p *Pool[T]) Put(t T) {
	if p.clearFunc != nil {
		t = p.clearFunc(t)
	}
	p.p.Put(t)
}

作为字节数组对象池使用:

	newFunc := func() []byte {
		return make([]byte, size, cap)
	}
	clearFunc := func(b []byte) []byte {
		return b[:0]
	}
	p := New(newFunc, clearFunc)
	bytes := p.Get() // 这里bytes类型是[]byte
	p.Put(bytes)

代码地址

对于缓存也是同理,目前大部分缓存库的实现都是基于

interface{}
或者是
byte[]
,但是我们还是更加喜欢直接操作具体类型,因此我们可以自己使用泛型实现(或改造)一个缓存库。我自己也实现了一个泛型缓存策略库,里面包含LRU、LFU、ARC、NearlyLRU、TinyLFU等缓存策略。

以上就是怎么利用Golang泛型提高编码效率的详细内容,更多关于怎么利用Golang泛型提高编码效率的资料请关注九品源码其它相关文章!