Pytorch中TensorDataset与DataLoader怎么联合使用

其他教程   发布日期:2023年07月09日   浏览次数:286

这篇文章主要介绍了Pytorch中TensorDataset与DataLoader怎么联合使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Pytorch中TensorDataset与DataLoader怎么联合使用文章都会有所收获,下面我们一起来看看吧。

    Pytorch中TensorDataset,DataLoader的联合使用

    首先从字面意义上来理解TensorDataset和DataLoader,TensorDataset是个只用来存放tensor(张量)的数据集,而DataLoader是一个数据加载器,一般用到DataLoader的时候就说明需要遍历和操作数据了。

    TensorDataset(tensor1,tensor2)的功能就是形成数据tensor1和标签tensor2的对应,也就是说tensor1中是数据,而tensor2是tensor1所对应的标签。

    来个小例子

    from torch.utils.data import TensorDataset,DataLoader
    import torch
     
    a = torch.tensor([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9],
                      [1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9],
                      [1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9],
                      [1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]])
     
    b = torch.tensor([44, 55, 66, 44, 55, 66, 44, 55, 66, 44, 55, 66])
    train_ids = TensorDataset(a,b)
    # 切片输出
    print(train_ids[0:4]) # 第0,1,2,3行
    # 循环取数据
    for x_train,y_label in train_ids:
        print(x_train,y_label)

    下面是对应的输出:

    (tensor([[1, 2, 3],
    [4, 5, 6],
    [7, 8, 9],
    [1, 2, 3]]), tensor([44, 55, 66, 44]))
    ===============================================
    tensor([1, 2, 3]) tensor(44)
    tensor([4, 5, 6]) tensor(55)
    tensor([7, 8, 9]) tensor(66)
    tensor([1, 2, 3]) tensor(44)
    tensor([4, 5, 6]) tensor(55)
    tensor([7, 8, 9]) tensor(66)
    tensor([1, 2, 3]) tensor(44)
    tensor([4, 5, 6]) tensor(55)
    tensor([7, 8, 9]) tensor(66)
    tensor([1, 2, 3]) tensor(44)
    tensor([4, 5, 6]) tensor(55)
    tensor([7, 8, 9]) tensor(66)

    从输出结果我们就可以很好的理解,tensor型数据和tensor型标签的对应了,这就是TensorDataset的基本应用。

    接下来我们把构造好的TensorDataset封装到DataLoader来操作里面的数据:

    # 参数说明,dataset=train_ids表示需要封装的数据集,batch_size表示一次取几个
    # shuffle表示乱序取数据,设为False表示顺序取数据,True表示乱序取数据
    train_loader = DataLoader(dataset=train_ids,batch_size=4,shuffle=False)
    # 注意enumerate返回值有两个,一个是序号,一个是数据(包含训练数据和标签)
    for i,data in enumerate(train_loader,1):
        train_data, label = data
        print(' batch:{0} train_data:{1}  label: {2}'.format(i+1, train_data, label))

    下面是对应的输出:

    batch:1 x_data:tensor([[1, 2, 3],
    [4, 5, 6],
    [7, 8, 9],
    [1, 2, 3]]) label: tensor([44, 55, 66, 44])
    batch:2 x_data:tensor([[4, 5, 6],
    [7, 8, 9],
    [1, 2, 3],
    [4, 5, 6]]) label: tensor([55, 66, 44, 55])
    batch:3 x_data:tensor([[7, 8, 9],
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]]) label: tensor([66, 44, 55, 66])

    至此,TensorDataset和DataLoader的联合使用就介绍完了。

    我们再看一下这两种方法的源码:

    class TensorDataset(Dataset[Tuple[Tensor, ...]]):
        r"""Dataset wrapping tensors.
        Each sample will be retrieved by indexing tensors along the first dimension.
        Arguments:
            *tensors (Tensor): tensors that have the same size of the first dimension.
        """
        tensors: Tuple[Tensor, ...]
     
        def __init__(self, *tensors: Tensor) -> None:
            assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors)
            self.tensors = tensors
     
        def __getitem__(self, index):
            return tuple(tensor[index] for tensor in self.tensors)
     
        def __len__(self):
            return self.tensors[0].size(0)
     
    # 由于此类内容过多,故仅列举了与本文相关的参数,其余参数可以自行去查看源码
    class DataLoader(Generic[T_co]):
        r"""
        Data loader. Combines a dataset and a sampler, and provides an iterable over
        the given dataset.
        The :class:`~torch.utils.data.DataLoader` supports both map-style and
        iterable-style datasets with single- or multi-process loading, customizing
        loading order and optional automatic batching (collation) and memory pinning.
        See :py:mod:`torch.utils.data` documentation page for more details.
        Arguments:
            dataset (Dataset): dataset from which to load the data.
            batch_size (int, optional): how many samples per batch to load
                (default: ``1``).
            shuffle (bool, optional): set to ``True`` to have the data reshuffled
                at every epoch (default: ``False``).
        """
        dataset: Dataset[T_co]
        batch_size: Optional[int]
     
        def __init__(self, dataset: Dataset[T_co], batch_size: Optional[int] = 1,
                     shuffle: bool = False):
     
            self.dataset = dataset
            self.batch_size = batch_size

    Pytorch的DataLoader和Dataset以及TensorDataset的源码分析

    1.为什么要用DataLoader和Dataset

    要对大量数据进行加载和处理时因为可能会出现内存不够用的情况,这时候就需要用到数据集类Dataset或TensorDataset和数据集加载类DataLoader了。

    使用这些类后可以将原本的数据分成小块,在需要使用的时候再一部分一本分读进内存中,而不是一开始就将所有数据读进内存中。

    2.Dateset的使用

    pytorch中的torch.utils.data.Dataset是表示数据集的抽象类,但它一般不直接使用,而是通过自定义一个数据集来使用。

    来自定义数据集应该继承Dataset并应该有实现返回数据集尺寸的__len__方法和用来获取索引数据的__getitem__方法。

    Dataset类的源码如下:

    class Dataset(object):
        r"""An abstract class representing a :class:`Dataset`.
    
        All datasets that represent a map from keys to data samples should subclass
        it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a
        data sample for a given key. Subclasses could also optionally overwrite
        :meth:`__len__`, which is expected to return the size of the dataset by many
        :class:`~torch.utils.data.Sampler` implementations and the default options
        of :class:`~torch.utils.data.DataLoader`.
    
        .. note::
          :class:`~torch.utils.data.DataLoader` by default constructs a index
          sampler that yields integral indices.  To make it work with a map-style
          dataset with non-integral indices/keys, a custom sampler must be provided.
        """
    
        def __getitem__(self, index):
            raise NotImplementedError
    
        def __add__(self, other):
            return ConcatDataset([self, other])
    
        # No `def __len__(self)` default?
        # See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
        # in pytorch/torch/utils/data/sampler.py

    可以看到Dataset类中没有__len__方法,虽然有__getitem__方法,但是并没有实现啥有用的功能。

    所以要写一个Dataset类的子类来实现其应有的功能。

    自定义类的实现举例:

    import torch
    from torch.utils.data import Dataset, DataLoader, TensorDataset
    from torch.autograd import Variable
    import numpy as np
    import pandas as pd
    
    value_df = pd.read_csv('data1.csv')
    value_array = np.array(value_df)
    print("value_array.shape =", value_array.shape)  # (73700, 300)
    value_size = value_array.shape[0]  # 73700
    train_size = int(0.7*value_size)
    
    train_array = val_array[:train_size]  
    train_label_array = val_array[60:train_size+60]
    
    class DealDataset(Dataset):
        """
            下载数据、初始化数据,都可以在这里完成
        """
    
        def __init__(self, *arrays):
            assert all(arrays[0].shape[0] == array.shape[0] for array in arrays)
            self.arrays = arrays
    
        def __getitem__(self, index):
            return tuple(array[index] for array in self.arrays)
    
        def __len__(self):
            return self.arrays[0].shape[0]
    
    
    # 实例化这个类,然后我们就得到了Dataset类型的数据,记下来就将这个类传给DataLoader,就可以了。
    train_dataset = DealDataset(train_array, train_label_array)
    
    train_loader2 = DataLoader(dataset=train_dataset,
                               batch_size=32,
                               shuffle=True)
    
    for epoch in range(2):
        for i, data in enumerate(train_loader2):
            # 将数据从 train_loader 中读出来,一次读取的样本数是32个
            inputs, labels = data
    
            # 将这些数据转换成Variable类型
            inputs, labels = Variable(inputs), Variable(labels)
    
            # 接下来就是跑模型的环节了,我们这里使用print来代替
            print("epoch:", epoch, "的第", i, "个inputs", inputs.data.size(), "labels", labels.data.size())

    结果:

    epoch: 0 的第 0 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
    epoch: 0 的第 1 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
    epoch: 0 的第 2 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
    epoch: 0 的第 3 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
    epoch: 0 的第 4 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
    epoch: 0 的第 5 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
    ...

    3.TensorDataset的使用

    TensorDataset是可以直接使用的数据集类,它的源码如下:

    class TensorDataset(Dataset):
        r"""Dataset wrapping tensors.
    
        Each sample will be retrieved by indexing tensors along the first dimension.
    
        Arguments:
            *tensors (Tensor): tensors that have the same size of the first dimension.
        """
    
        def __init__(self, *tensors):
            assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors)
            self.tensors = tensors
    
        def __getitem__(self, index):
            return tuple(tensor[index] for tensor in self.tensors)
    
        def __len__(self):
            return self.tensors[0].size(0)

    可以看到TensorDataset类是Dataset类的子类,且拥有返回数据集尺寸的__len__方法和用来获取索引数据的__getitem__方法,所以可以直接使用。

    它的结构跟上面自定义的子类的结构是一样的,惟一的不同是TensorDataset已经规定了传入的数据必须是torch.Tensor类型的,而自定义子类可以自由设定。

    使用举例:

    import torch
    from torch.utils.data import Dataset, DataLoader, TensorDataset
    from torch.autograd import Variable
    import numpy as np
    import pandas as pd
    
    value_df = pd.read_csv('data1.csv')
    value_array = np.array(value_df)
    print("value_array.shape =", value_array.shape)  # (73700, 300)
    value_size = value_array.shape[0]  # 73700
    train_size = int(0.7*value_size)
    
    train_array = val_array[:train_size]  
    train_tensor = torch.tensor(train_array, dtype=torch.float32).to(device)
    train_label_array = val_array[60:train_size+60]
    train_labels_tensor = torch.tensor(train_label_array,dtype=torch.float32).to(device)
    
    train_dataset = TensorDataset(train_tensor, train_labels_tensor)
    train_loader = DataLoader(dataset=train_dataset,
                              batch_size=100,
                              shuffle=False,
                              num_workers=0)
    
    for epoch in range(2):
        for i, data in enumerate(train_loader):
            inputs, labels = data
            inputs, labels = Variable(inputs), Variable(labels)
            print(epoch, i, "inputs", inputs.data.size(), "labels", labels.data.size())

    结果:

    0 0 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 1 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 2 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 3 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 4 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 5 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 6 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 7 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 8 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 9 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    0 10 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
    ...

    以上就是Pytorch中TensorDataset与DataLoader怎么联合使用的详细内容,更多关于Pytorch中TensorDataset与DataLoader怎么联合使用的资料请关注九品源码其它相关文章!